Magnetic dynamo action at low magnetic Prandtl numbers.

نویسندگان

  • Leonid M Malyshkin
  • Stanislav Boldyrev
چکیده

Amplification of magnetic field due to kinematic turbulent dynamo action is studied in the regime of small magnetic Prandtl numbers. Such a regime is relevant for planets and stars interiors, as well as for liquid-metal laboratory experiments. A comprehensive analysis based on the Kazantsev-Kraichnan model is reported, which establishes the dynamo threshold and the dynamo growth rates for varying kinetic helicity of turbulent fluctuations. It is proposed that in contrast with the case of large magnetic Prandtl numbers, the kinematic dynamo action at small magnetic Prandtl numbers is significantly affected by kinetic helicity, and it can be made quite efficient with an appropriate choice of the helicity spectrum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convection-driven kinematic dynamos at low Rossby and magnetic Prandtl numbers: Single mode solutions.

The onset of dynamo action is investigated within the context of a newly developed low Rossby, low magnetic Prandtl number, convection-driven dynamo model. This multiscale model represents an asymptotically exact form of an α^{2} mean field dynamo model in which the small-scale convection is represented explicitly by finite amplitude, single mode solutions. Both steady and oscillatory convectio...

متن کامل

Dissipation in dynamos at low and high magnetic Prandtl numbers

Using simulations of helically driven turbulence, it is shown that the ratio of kinetic to magnetic energy dissipation scales with the magnetic Prandtl number in power law fashion with an exponent of approximately 0.6. Over six orders of magnitude in the magnetic Prandtl number the magnetic field is found to be sustained by large-scale dynamo action of alphasquared type. This work extends a sim...

متن کامل

Fluctuation dynamo and turbulent induction at low magnetic Prandtl numbers

This paper is a detailed report on a programme of direct numerical simulations of incompressible nonhelical randomly forced MHD turbulence that are used to settle a long-standing issue in the turbulent dynamo theory and demonstrate that the fluctuation dynamo exists in the limit of large magnetic Reynolds number Rm ≫ 1 and small magnetic Prandtl number Pm ≪ 1. The dependence of the critical Rmc...

متن کامل

Large-scale Dynamos at Low Magnetic Prandtl Numbers

Using direct simulations of hydromagnetic turbulence driven by random polarized waves it is shown that dynamo action is possible over a wide range of magnetic Prandtl numbers from 10−3 to 1. Triply periodic boundary conditions are being used. In the final saturated state the resulting magnetic field has a large-scale component of Beltrami type. For the kinematic phase, growth rates have been de...

متن کامل

Current Status of Turbulent Dynamo Theory From Large-Scale to Small-Scale Dynamos

Several recent advances in turbulent dynamo theory are reviewed. High resolution simulations of small-scale and large-scale dynamo action in periodic domains are compared with each other and contrasted with similar results at low magnetic Prandtl numbers. It is argued that all the different cases show similarities at intermediate length scales. On the other hand, in the presence of helicity of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 105 21  شماره 

صفحات  -

تاریخ انتشار 2010